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ABSTRACT
Laminar incompressible flow in rectangular channels is considered. In

Part I . the ent r y region is evaluated by a boundary layer/potential core anal-
ysis. It is shown that the three-dimensional displacement induced potential
flow can be described with a pair of two-dimensional potential functions.
Second-order boundary laye r solutio ns, with ai,d without surface mass trans-
fer , are determined;  an interesting second a ry flow reversal is predicted. In
Part II , nu merical solutions are obtained for the viscous channel equations ,
which are derived from the asymptotic theory of Part I. A two stream
function , velocity , vorticity system , independent of the Reynolds number , is
solved with a combined iterative ADI/point-relaxation numerical  procedure.
A single calc ulation applies for all Reynolds numbers , which appears  only in
the coordinate scaling. The axial flow behavior of Parts I and II are In good
agreement in the asymptotic entry region where both anal yses apply. Sec-
ondary flow reversal is calculated; however,  the grid Is too crude for quanti-
tative comparisons.  Numerical  solutions are obtained until fully developed
conditio ns are achieved. Agreement  with experimental data is good.

NOMENCLATURE

a cha nn el half h eight p constant 1.2 1678
b channel half width £ 1 for rectangular channel and
f = defined by equation (I. 4a) zero for two-dimensional channel

parameter defining maca ?~~ boundary layer coordinate
transfer )~ b/a

p pressure V kinematic viscosity
Re Reynolds number based on = normalized distance along the

channel  half width channel
() u , v, w = velocities along the coordinate o density

axes c a/b

W U ,V .W = induced velocities in inviscid p= velocity potential
flow $ stream function for cross flow

U 
~_ x , y ,  z distance along the coordinate U = stream wise vort icity

axes
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Subscr i pts

ent  e n t r y n surface  nor m al di rec t ion
o zeroth order  m = represents  mass t ransfe r
1 1st o rder  i , j , k cha racter ize the f in i t e -d i f fe rence
e = ed ge of the boundary layer grid at the point ~~, y, z

Superscript

* i te ra t ion  = normalized value

INTRODUCTIO N

Laminar  incompre ssible flows in straig ht two-dimensional , axisymm etric
and rectang ular channels ha ve b ee n pr ev ious ly inves t igated by a variety of
analy tic a nd numer ical t ech niques. These are typ ified by the lin ea r bounda r y
layer (Oseen) app roximation [I) for evaluating the axial velocity and pr essure
his to ry  downst ream of an initial entry reg ion , more exact numerical  ana ly ses
using the boundary layer [2. 3] or Navi .r-Stokes e~ uatlons [4—6] , and fina lly
a boundary layer /potent ia l  core expansion method L7-9] that models the flow
i n the en t ry  reg ion.

From these  investi gations , the in ternal  flow in a three-dimensional  rec-
tan gular  channel can be portrayed by the various regions depicted in Fig. 1
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Fig. 1 Channel  geomet ry

At the  l e a d i n g ed ge , a small Nav ier - Stok e s  ent rance  region , wh ere x= O(R 1),
develops R U.a/’J is the Reynolds number based on the channel  half-  e
hei ght a , th~ ki nema t i c  viscosity V • and the undisturbed stream U_ . The
axia l d i st anc e  x is norr .~alized w i th  a . Complete Navier-Stokes solutions
are  required in orde r  to describe this entranc e flow. However ,  for large
v , I u . s of R • this len gth is so small  that  extraordinary axial gr id resolution
is r equ i r ed ~ moreove r ,  the surface viscous  layers  are so thin that an cx-
t r e rne l y f ine  mesh I s also necessary  normal  to the channel wall.. For these
r e a s o n s , an  accu r ate descri pti on of t h i s  lea di ng edge f low is quite difficul t  to
obt t i n .  Sat is factory  solution. are not cu r ren t l y availabl e, an d t his flow wi ll
not be co nsidered here.

1’ollowi ng the Navier -Stoke .  regi~~ is the so-called entry flo w , whe r e
x = 0(1). For th i s  region , the ax i a l  gra d ient .  in the sur face  viscous layers
have d imini shed , a nd the r efore bo un dar y laj er  theory I. now applicable. As
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the bou ndary layers grow downstream , the potentia l core will be apprec i ab l y
a f f ec t e d by the viscou s displacement e f fect s .  A systemat ic  matched v i s cou s/
inviscid expansion procedure is required. This anal y sis has been comp letccl
for  two-dimensional  cascades [7] and inlets [8 , 9] . A gr eement  w i th  solut ions
of the complet e Navier-Stokes equations [s ] is quite good , so that  the va l id i ty
of the bou ndar y layer procedure has be en established. In the d o w n s t r t am
asympt otic po rt io n of the  en t ry  flow , where  x >>l , the solutio ns 1~~surn e  a
par t icu lar l y simple for m in te rms of the coordinate ~ ~( 2 x / R  )~~. The con-
stant B = 1. 21678 , and ~ is smal l but f in i te ; e .g .  , ~ < 0 . 2  . The~ efore . for
la rge R the ent ry  flow can extend many  channel wTdth s d own st r e a m .  In th is
asympt ctic entry  reg ion the axial velocity is un ifo rm ac ross  the po ten tia l  core
and the effects of d i f ferent  init ial  condi t ions are  no longe r d iscernible  [7-9)

Further  dow n s t r e a m  the surface  boundary layers become so th ic k  tha t  they
fill a signif icant  portion of the channel.  The b oundary l a y e r / in v i s c i d  core ex-
pansion procedure is no longer convergent  and a fully viscous channe l  flow
must  now be considered. In this flow domain ~ = 0(1) and the axial  flow gra-
dients are small , but f inite , thro ughout the channel .  B oundary  l aye r - l i ke
equa t ions govern  this  flow re gime. N umerical solutions are required. Finall y,
for ~ = ~ ,> >  1, the axial gradients  vanish ent i rel y and f u lly developed con-
ditio n. a~~ achieved. The distance ~ has been ter med the channel  “e n t r a n c e
length” . 

ent
In the present analysis all flow reg imes downst ream of the leading ed ge

Navie r-Stokes flow are considered for rec tangular  inlets.  The paper is g iven
in two parts. In Part I the entry reg io n is considered with  a matched boundary
laye r/potential ~~re proced ure similar to that used in two d imensions .  This
a nalysis applies for a three-dimensional  cascade or what  is more  appropr ia te l y
t e rm ed a baffle conf i g urat ion . The solutions for the asymptotic  en t ry  flow ,
where  the effects of the external  geome t r y  vanish , [9] are obtained by trans-
f orm methods.  As in two dimensions a uniform axial flow is found in the po-
ten tial core region. Second-order b oundary  la yer solut ion s, with  and wi thou t
sur face mass  t r a n s f e r , a re  obtained for bo th the axial and secondary  flows.
A simplifie d result is found for the secondary flow behavior in the potent ial
cor e; in the boundary layers , the secondary  flow closely resembles tha t  found
along an infinite axial corner  intersection.  [10.11] 

________________

In Part II , nu merical  sol ut ion s a r e obta ined fo r a square  inlet , a l tho ug h 
~~~~~~~ ______

the a nalysis is developed for a rec tangular  channel .  These resul ts  can be con- -. - -

side red to apply from the asymptotic entry  reg ion t o the fu l ly  developed re gion.
Comparisons with the analytic solutions for the asymptot ic  en t ry  flow , ch or e
the analyses of Parts I and 11 overlap, are  possible. Of pa r t i cu la r  in te re st  in
this inve stigation is the evaluation of the axial shear stress and the accura te
resolution of the secondary  flow behavior.  Previous numer i ca l  s tudies [2-4]
of this geometry have concentrated on the axial velocity and p re s su re  dis t r i -
butions. One of the conclusions of the present  investi gation is that  this axial  -..--

flow behavior is virtually insens i t ive  to the t rea tment  of the secondary  flow ,
al though the Inverse is not t rue . In the p re sen t  study, conver ged secondary  “~

flo w solution. are obt ained , and w i t h In the l imi ta t ion  of the relat ively course UI$T~MTIO~/MAILA~
grids considered here the solutions appe.. r to be quite reasonable.  — - -- -,

~~~~~~~ ~~~~It is shown that a system of b ounda ry  layer eq uations describe the en t i re
channel  flow downst ream of the entry reg ion , w h e r e  ~~= 0(1). With  an appro-
priate t r ans fo rmat ion  of the axia l  coordinate f rom x to ~ the Reynolds  number
R can be scaled out of the equations.  Reynolds number  dependence ap~pears
oRiy when the ph ysical axial location x is specified. ~system~~T~~iu at ions
Inc lud ing the axial  velocity, axial vo rt i city and a pair of s t ream func t ions  for  ________________

the rotat iona l secondary motion is developed. The axial p r e s su r e  va r ia t ion
or surface  shear stress is fixed by mass  con servat ion.  A p re d ic to r - co r rec to r
m ethod is used for the axial  velocity and vor t icity ,  and a poi nt r e l a x at i on  pro-
c edure is used for the secondary mot ion.

Complete numerical  solutions with and wi thout  secondary  m ot ion have  been
ob~alned. Near the en t rance  a small overlap reg io n where  both the anal y t ic
en t ry  solution and downst ream numerical  solution app ly is d iscerned.  The
agreement is quite reasonable , even though onl y a few g rid poin ts lie w ith in
the very thin boundary layers .  The numer i ca l  solutions for the secondary
m otion ex h ibi t a r eversed  profile predicted by the e n t r y  solutions of Part  1.
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PART I - ENTRY ANALYSIS

S. 0. Rubln and S. Saari

1.1 Flow .Descrlption

The flow behavior In the entry reg ion of Fig. 1, where x 0(1), is con-
sidered. The entry flow is characterized by the formation of thin surface
viscous layers with a large central inviscid core. A viscous/iav lacid ex-
pansion procedure Is app~licable. For the ent ry  anal ysis , rectang ular channels
formed by a doubly Infinite baffle confi guration is assumed. A uniform ir-
rotational upstream flow Is also specified. In reference [12] rotational entry
I. also conside red, The symmetry inherent in this baffle geometry greatly
simplifies the evaluation of the displacement induced core flow. The entry
anal ysis for a single Inlet is very complex. For two dimensions this geom-
etry has been evaluated by a Weiner-Hop f technique [9] ; It has been shown
that In the asymptotic entry fl ow , for x > > l  or = 0(1), the effects of the en-
trance geometry are no longer Important. Thçrefore , th e cascade and single
inlet solutions agree In this region. For the rectang ular channels considered
here , the asymptotic entry behavior In the core reg ion is determined by a
Fourier t ransform solution for x >  >1. The entry flow for x = 0(1) is de-
termined by the method of Images. lo both cases the three-dimensional rec-
tangular channel solution can be represented by a pair of locally two-dinien-
slonal solutions previously determined in reference [7]

I. 2 Viscous/Inviscid Expansion Analysis-Potential Core Solution

In the entry region the large axial gradients , important in the leading edge
Navier-Stokes flow, ar e smaU when compared with the surface normal vari-
ations and therefore boundary laye r theory is applicable. This behavior has
previously been observed in the entry reg ion of two-dimensional channels ,
17-9] ; fur ther  confirmation for the asymptotic entry reg ion of two-dimensional
inlet s, where  h igher-order  te rms In the boundary layer expansion are re-
quired , is given in section 1. 3 of the present paper. In this section , the
leading terms describing the boundary layer and potential core behavior are
obtained for the entry and asymptotic entry flows.

Boundary Layer Analysis

The flow in the entry reg ion is depicted in Fig. 2. Thin boundary layers
grow along the walls

7 and an inviscid core
_______ •_______ 

reg ion is located cen-
— _______ _______ — — trally in the channel.

A t the corners  the in-
_______ _______ 

te r fer r ing  boundary
— layers  lead to a

boundary reg ion te rm ed
the cor ner layer.  This

P . fl ow has bee n studied
extensively for an In-
finite corner ,  see ref-
e rences [10, 11] , and
can be neglected to
lowest-order  i n the
boundary laye r analysis.

~~~~~~ LImES c 7 We will re turn to the
LME5 corner flow later In

— — this section,

Fig. 2 DescrI ption of entry flow
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4,

Since the flow gradients  are large only In the sur face normal direction , the
standard bounda ry layer equations are obtained on each will. For the re-
mainde r of the boundary layer anal ysis in this paper , the wall ~ -a will be
considered. Similar results are obtained for the other walls. The boundary
layer equations are

U + V  + 0 1  0 , (I .la)x y z

uu + ~u + a~~u = -p + 1 
+ a2 u ) , (I . ib)x y z x 

~ 
yy zz

p 0 • (I. lc)

u x + + C~~~~ Z ~~~ 
+~~ _ ( l

yy + a2 
~~~ • (I. ld)

w h e r e  u , are normalized with U~ ; x, y with a;z wIth b and p with 0U~a = a/b = )~ • .
~ 

The di f fus io n terms in the axial direction are neglected as
they are O(R ) smaller than the surface normal (y) variations. In the
boundary lay~r, cross derivative. (z) are also small when compared with
normal changes , but are important in the corner layers and may be required
fo r the second-order  boundary layer a nalysis of the followi ng section . Using
standa rd bo u ndar y layer ass um pt io n s, we have

u s  u + R e~ u1 + ... , (I. Za)

(I. 2b)

~~~~~~~~~ + R 1 , + , , ,  , (I,2c)e I e 2
where  y 0(R 

~~) ; x, a = 0(1). To lowest order in R , equations (1.1)
become e e

u +~~ = 0  , (I. 3a)
~~, 

ly

U U +~~~ u = 1 u , (I.3b)o o 1 o o

U
0 
W

l
: 
+ 
~, 

= ~~~~l~~f ç W~yy . (I. 3c)

The axial pressure gradient is zero , since the Invlscid stream Is undisturbed
and uniform. Equations (1. 3) wIth the boundary conditions u 0 at y=~ l,
and u-.U~ for 

~~~~~ 
are precisely those of the flat plate boundary layer. The

subsc r ipt e denotes the edge of the boundary layer. The solution of these
equations is well-known [13.1 and given by

u = f0
’ (11) • V

1 
= (2xR~ )

1 (~ f~ (i’~) - ( ( II ) )  , (I. 4a)

where  -

f ( ~) + f ( ~) r ( ~) = o , f0 (o) = f ’ (o) = O , (I. 4b)

f~ (o) 0. 469600

1~~= yR 1~~(Zx~~ . (1,4c)
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I ntroducing the notation f~ 2 x / R ~~. 
we have ~~ = -~~~~_ . For Y~~Ye or

TI- a , we fi nd 
~ 2 -l -l

V
1
... B (2 xR ~ ) ~ 8 ~ 

R e whe re 8 = 1 . 21678 .

Potential  Core: Disp lacement  Effects

The surface boundary layers per turb the cen t ra l  inviscid core. The
effective co re area is diminished thereby accelerating the flow . Since the in-
vi.cid flow is Irr otat iona l the ~~ree-di mensional Laplace equa tion m ust be
solved for  the perturbed core  fl~~v . Capital le t ters  are used here to dist inguish
the  potential flow va riables f ro m those of the bo u ndar y layer.  A unified no-
tation is used i n the fi gures .  Therefore ,

r -~~ 1 2
= U~ LX + R e c~ (x , y, z)j . and v 

~l = 0

Also ,

U = p  = U  + R ~~~ U , etc .x • e 1
By matching with  the inner  boundary l aye;s , we ob tain for x > o the boundary
conditions

‘I l = ~ (2x)~~ (I. Sa)

on all walls, where n denotes the surface normal direction measured positive
inward; e.g. on y=l , n= -y, etc. For x< o, with the baffle co nfi gurat io n , the
sym m e t r y  condit io n s lead to

0 . (I . 5b)

Finally, for  x-. -.  ‘ae require the uniform flow condition , 0.
I n view of the symmet ry ,  a nd the fact  tha t the bo undary X conditions ( I, 5)

are  indepe nde nt of y a nd z , we can wri te

~l 
(x ,y,z) ~p~~(x ,y) +p~ (x ,z)

where and sa tisf y two-di m~ nsional L4place equations. The boundary
condit loI~s on y~ *1 app ly to 

~ l . since ~ii~ •0, and those on z ±1 apply
to i~ . The r efo re the three-dimensional La~lace equation and associated
boundary conditions are satisfied by a pair of two-dimensional solutions each
corresponding to the entry solution In a two-dimensional cascade. This is a
signif icant  simplification , sinc e the two-dimensiona l solutions are given i n
Van Dyke [7] by the method of Images and by Fourier t rans form techniques.
The complete three-dimensional analysi. and details of the solution are g iven
in reference 112]. The image technique Is preferable for the entry  flow , while
tho transform procedure is preferable In the asymptotic entry region. The
analysis and solutions are summarized below:
I ma e Solution

ith the appropriate Image or Green ’s function dl.trlbut:.on., we obtai n
the foilowing solutions:

V 1 = + ~~~~~ y
Z
~~

+ x )
~ ~ 

( (x2 + (Z n + y) 2)~~~ x (I. 6a)
X +

~~ n i  x + (Zn + y)

- 

~~ 
( (X2 + (2n.y ) Z)~ + x )~

},
n~ l xZ 

+ (Zn-y)2
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Note that does not appear in this expression.
=~~ is obtained from (I.6a) with y — a z  and n-. an Inside the

summ3btIoI~ n 1 to ..

2 2~~ ‘~ 13/3
U1 = - ~ 

(
~x + y ) -x % + ~~j a ((n - l )kn~)2 2 1x + y  /

/ 2 2 * )* 2 * 

)~i+ cx 
+ (2n~y) ) -x + ((x

2 
+ (Zn+y) ) -x

x + (2n-y)
2 

x + (2n+y) j

((x 2 + cI~ 
2)* ~~ 

+ ~ [a
312 

a~~ (( m - l )~ _ m *) ( I. 6b)L�
+ 0  Z m=~

/ 2  2 z ~ ~~ 1 2~~ Yx + a (2m-z) x 2 
+ 

Z 
(Zm+z)

2 ] 
~

+ 

~

(x + (Zm- z)  a) _x) 
+ 

ç
~(x Z 

+ (2m + z ) ) -x

The ce nterline axial velocity for d i f ferent  rec tangular  inlets is shown in Fig. 3
for R = 75. Typical solutions

_________________________________ for t hee streamwiae isovels at
~~•75 variou, locations in the ent ry

flow a re shown on Fig. 4
for d i f fe ren t  rectangular  in-

, .w. .

let,. It I. interesting to note
tha t  for  ve r y sm~ 1l values of
x the behavior Is monotonic.

in the axial  flow dist r ibut ion
For larger x values a valley

is pre dicted. This behavior
has been observed m n two-
dimensional Navier -St o kes
solutions 14-6]. FInally, for‘5
even lar ger x value, the be-
havior is once again mono-

p 
_ _ _ _ _ _ _______________-- . . to n ic , bu t the di rect ion of in-

0 I S • I creas in g u ha. chan ged from
0~~~O 0N)~ C that found for small x. A

typical solution fbr a 5x1
Fig. 3 Axial velocity di s t r ibu t ion  in chann  1 is shown on Fig. 4d.

entry region -rectangular channel

Transform Solutions
If the potential problem I. solved by Fourier transform. , the same pai r-

wise two-dimensional behavior occurs and the solution for I. a. fo llows
[7 , 12]

- lax

~ 1 (x ,y ,  z) = ..... j ... f (1 + t sgn .)e co.h ‘~~
1•

~~~~ d. (1. 7)
-. sI.l~ .lnh s

)
p r j i  + lsg n s)e 1 ”  cosh c .( l-z )

— d..lnh “~~

I . _____ 
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Fig. 4c Streamwi,e isovel. in en t ry  Fig. 4d Streamwise isovels near
reg Ion- square  channel entry-  rec tangular  channel

The velocities etc. are diff icul t  to evaluate for general  values of x , but
for x >>l (th e a .y.ipt~ttc ent ry  flow) it is possible to obtain asymptotic
ex pressions using the generalized Fourier t r a n s f or m  concept outlined by
Lighthill (14] . More complete detail, of th i s  procedure can be found in ref-
erence. 17 ,12] . The results,for x >> 1, lead to the following expansions of
.olutlon (I. 7).

(
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U1 
0 0 2 1 9 L x1(l + a) +

x

~ ( 3y2 -1) + a~
5

(3z 2 1) ] +x

(I . Ba)V
1 

-Z~~ By [x 1 + (l-y 2)/Sx / ]+ 
y

5,3
W 1 = = ~2 -

~ B Z [X
1 + ~ ( l - z 2 ) / 8 x  ]+ 

z
The non-monotonic  behavior seen ear l ie r  in the serie, solutions is still
appare nt in the asymptot ic  solution . In refere nce LIZ ]  the asymptotic and
se ries behavior for x < o is prese nted.  Here we are concerned only with the
in ternal  flow.

For very lar g e x > >l , the f u ll solutions for  the v elocities become

)
V -9~ 

~~ R y+ , (I. 8b)
e

W -  -B 2
~~~

1 R -l Iz .e
Therefore  the asym ptotic en t ry  flow and Onset of the full y visco u s channe l  flow
ha~e the fol lowing propert ies  in the central  core region:

(1) The axial velocity is un i fo rm across  the channel .
( 2) The relevant axial flow coordinate is = 0( 1)
(3) The secondary velocities are 0(R e •”) and no t 0( R *) as in the en t ryeflow boundary  layers and po t ential core .
This behavior  has previousl y bee n found for two-dimensional  channels and

cor res ponds to the form ori g inally as sume d_by Schlichting [13] in ~is expansion
techni que. For two-dimensional  channels V is g iven by (I. 8b) , W= 0 and
U 1 + ~

Fig. 5 depicts the axial f low var ia t ion  along the channel cen t e r l ine  as
obtained by the im ag e

______________ - - 
and asymptotic solutions.

U5 ~~~~~~~~~~~~~~~~~~~~~~ 
‘ It is interest ing that the

-— -uses se.utes asymptotic  fo r m is
...moo . ~ ‘I ~0 achieved for rela tively

3 1.0. y’O smal l values of x , eve n
though it has been de-
rived for x >> 1. Similar
behavior  is found at
other  cha nnel locations.
This al low s for the use
of the s implified
form ula. (I . 8b) over a
sig n i f i c an t  portion of

________________ ______ the entry reg ion.

Fi g. 5 Ent ry  fl ow solutions- Square channel
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Fi nall y, Fig. 6 dep icts the qual i ta t ive  behavior of the secondary flow
st ream lines projec ted onto
the (y , z) c ross plane. For
a square  channel  these li nes
are strai ght , for a 2x 1
cha n nel parabolic , and in

a — — ———  — — I g enera l  they are g iven by

— V —
d - 1 1

4 - = z = ‘
~~~

/ 

the equation:

~~
-.. ~~= c V ° or z o c c y C ,

(I . 8c)

where  c is a d i f ferent  con-
s tant  for each of the stream-

— lines. For a square channel
z= cy;  for c= 2 , z = Z c y 2

(I) a . 2 b  etc.

_ _ _ _  - — 2

Ii,) o ’b

Fig. 6 Asymptot ic  flow project ion on
cross  plane,

I. 3. Second-Order Boundary  Layers - Asymptot ic Ent ry  Reg ion
With the asymptotic potential solutions (I. Bb) the second-order boundary

layer,  can now be evaluated. Wit h the expansions (I. 2) in equations (I . l), the
axia l  a nd sec ondar y motio n alon g t he ~ urface  y = -l are described by the
followin g equations. Terms of 0(R~~’~~) are retained.

u + P  V + 0 w  0e 2 y l~

U
0 

U~ + u
1 

U
o

x 
+ R 1 V

1 
U1y + V2 R e~~

i U Oy + 
~lx 

- ~~~~• U1

u~~~ + R  ~ = = - a p ~~l ,
~o lx e 1 ly lz I~~ lyy

As y — y  . ~~~~~~~~~~~ from (I.Rb); therefore, 
~~~
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(TI) + (1+11 ~f (TI ) =  to,, + R e~ * U
1

,
~~ 

-e$z(Zx)~
’1h’(TI) W 1 i 3 ( ~~)

the following equations are obtained for f1(TI ) and h( TI )

+ (f h 8
)

8 
= , (I. 9a)

and
+ f 1 — C ’ C + 2C £ = -l + € f’ h/ ( l+c) , (I. 9b)

where from continuity v2 : p~~l+a)  (TI f _  zç(TI ) ) + ch( TI )]

The boundary conditions become

f1 (o) = f ;  (o) = h ’(o) = 0 , (I. 9c)

lim f (?)) h ’(T) ) -.1
TI—.

Equation (I. 9b) for the secondary velocity 
~~ 

is identical wit h that derived in
earlier studies of the flow along an unbounded corne r [10] . An interesting
secondary flow reversal is predic t ed , and this  be havior is shown qualitatively
on FIg. 6. Th~ core solution was discussed in Section I. 2 . The reversed
flow profile Is depicted more accurately in section I. 4

The second-order axial flow Is described by equation (I. 9a). For two-
dimensions (c o) thi, equation was considered by Schlichting [13] and Wilson
[B] . Solutions are shown on Fig. 7 . Also presented is the potential core

IS = —j -—— , I: 
I
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Fig. 7a Two-dimensional entry Fig. 7b Two-dimensional  e n t r y
flow solutions flow sol u tio n s

behavior, the first-order Blasius solution , and a com posite viecous/ inviecid
profile. Comparisons are  m ade with the Navier-Stokes solutions of Wang and
Longwe ll 15] . The agreement Is reasonabl y good fo r ~ < 0. 2 and therefore
the applicability of the expansion procedure in the entry llow Is confirmed.
For three-dimensional  flows , solution, have been obtained for a square inlet
(a 1). These results will be presented in Part  II , whe re comparisons with



the  v i s c o u s  c h a n n e l  s o l u t i o n s
are  inc luded .  The bounda ry
l a y e r- l i k e  b eh a v i o r  f o u n d  in

— ~~~~~~~~~~~~~~~~ 
_; (1. 8) is used to desc r ibe  th e

C0~~~05IT1 ...à O~~O = ~~T1NTI*4. d o w n s t r e a m  v i s c o u s  c h a n n e l

L • f l o w .  The e x p a n s i o n  p r o c e d u r e
Ii 

= s h ow s  ev idence  of d iv e r g e n c e
I 

/ f o r  v a l u e s  of > 0 . 2 . Hi gher-
o rde r  t e r m s  (not  s h o w n )  e x h i b i t

° / ~~~~~ • b e h a v i o r  t y p i c a l  of d i v e r g e n t

/ 
asymptot ic  s e r i e s .  Also , eigen-

I •L*s us\ = v a l u e s  of equa t ion  (I .  9a) m u s t
O S~- t hen  be i n c l u d e d  in the  e x pa n s i o n .

u \ These i n t r o d u c e  u n k n o w n  con-
\ s t a n t s  w h i c h  m u s t  be e v a l u a t ed

o4 \ by o the r  m e a n s , see re fe rence s

1 L8  

A f inal  c o m m e n t  on the
04~ s e c o n d a r y  behav io r  in t he  en t r y

5.75 . K’33353 r e g i o n  c o n c e r n s  the  c o r n e r
f .o~s2e l ay e r s  of Fig.  2 . The c o r n e r

02~ I 8,.oe 
~~ flow f o r  an i n f i n i t e  g e o m e t rY  has

[I 
wU c-LolIGw0~L been p resen ted  in g r eat  de ta i l  in

e a r l i e r  s tud ie s  [10. IL . Sig-

~~~~~~~~ -~~~~ ~ 
n i f i c a n t l y ,  f o r  the  c h a n n e l  the
s e c o n d a r y  flow behav io r  nea r
the c o r n e r s  ( z - .± l )  g ives

Fig. 7c T w o - d i m e n si o n a l  e n t r y
flow s o l u t i o n s .  — s (Zxr r R h’ (~)1 e

Th i s  is p r e c i s e l y  the  resul t  found fo r  the  unbounded  c o r n e r  f low and t h e r e f o r e ,
in t he  a sympto t i c  e n t r y  reg ion , the so lu t ions  of r e f e rences  LI0 , l ii  app l y to the
c h a n n e l  as we l l .  A s w i r l i n g  m o t i o n  s h o w n  q u a l i t a t i v e l y  on Fi g. 6 is o b t a i n e d .

Th i s  comp le tes  the e n t r y  f low d e s c r i p t ion  fo r  the  a x i a l  and  s e c o n d a r y
m o t i o n  in the  po t en t i a l  core , the b o u n d a r y  l a y e r s  and c o r n e r  l a y e r s .  Com-
p a r i s o n s  w i t h  n u m e r i c a l  so lu t ions  a re  g iven  in  P ar t  II. In s ec t ion  1.4  a b r i e f
d e s c r i p t ion  of the flow behav io r  a l lowing  fo r  s u r f a c e  m a s s  t r a n s f e r  is pre-
s e n t e d .  The e ffect  of i n j e c t i o n  is p a r t i c u l a r l y i n t e r e s t i n g .

I. 4 S u r f a c e  M a s s  T r a n s f e r

In view of the re la t ive  sim pl ic i ty  of the asymptot ic  e n t r y  f low ana lys i s , the
e f f e c t  of s u r f a c e  mass  t r a n s f e r ,  both suc t ion  and i n j e c t i o n , on the secondary
m o t i o n  in th i s  reg ion is now evaluated.  The e f f ec t s  of mass  t r a n s f e r  on the
st r e a mw i s e  p ro f i l e s  have p r e v i o u s l y  been  ca lcu la ted  for  a f la t  plate by the
s I m i l I l r i t v ~~nal ysis  of E m m o n s  and Lei gh [15] . The mass  i n j e c t i o n  is 2

of t h e
type  ~‘ —  ~ , or in t e r m s  of = and the no rma l i zed  velori tç ’  v~~ R 9 ‘~ I

w e  o b t a i n  V c o n s t a n t .  For a u n i f o r m  o u t e r  s t r e a m , as o c c u r s  in ~~e asymp-
to t i c  e n t r y  reg ion f o r  smal l  , the  m o d i f i e d  b o u n d a r y  l aye r  e q u a t i o n  for
u = f ’ ( )  on the l o w e r  c h a n n e l  wall becomes

01

f ’ + 1  1” = om m m
VA h e r e

f (o)  m , f ’ (o)  = o , . [f 1 
(‘fl ) —. l , I ( , )  ~~— R  .~m m l im m ro m

TI-..

The n o r m a l i z e d  s u r f a c e  ve loc i ty  v is g iven as
— lv =  m

m>o f o r  i n j e c t i o n ;  m <  o for  s u c t i o n , ~ = 1. 2l67~~.
0
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The solutio ns for f a re  tabula ted  in re fe rence  [15] . The asymptot ic
b o u n d a r y  condi t ion tm on the disp lacement velocity v be come.

lim v — B  / 87’-. . m

8 is tabulated for several  values of m in Table I; also presented are valuesm of the  shear  s t ress  pa ramete r
Table I: Shear s t resses with f ” (o)mmass  t r a n s f e r The no rma l i zed  secondary

__________ ________ velocity w can be defined a,
m ~~~~~

) f,
’ (0) w = (B m / B ) h ~~ ( T I )

-0.707 3.8118 0.0502 where
-0.495 2.5913 0.1512 h ’ + f  h’ + f ’ h ’ = 1-0.363 2.0929 0.2326 m m m m m
‘O.177 1 .6108 0.3460 and

—0.070? 1 .3665 0.4191 h ’ (o) I o, li m h’ ( T I ) -~lm m
0.0 1.21678 0.4696 T I - .
o.o7o7 i.oiss 0.5214 also 

-h (o) - -B0. 17? 0.8766 0.6012 m m
0.353 0.5724 0.7394 The solutio ns for h ’ and f’m m0.495 0.3476 0.8538 are show n in Fig. 8.
0.707 0.0330 1.0308 Mass inject ion increases  the
0.778 0.0670 1.0910 secondary  flow reve rsal as well as
0.848 0.1650 1.1618 the s t reamwise  su r face shear

a t resa.  With large suction the
secondary flow reversal can be
el iminated.  On Table l i t  is seen

5.011111
00207 070 / /

8’ ~4 /
-

FIg. 8 Ef fec t s  of mass Inject ion on asymptotic velocity
profiles in en t ry  region.

that h (o) chan ges sign at about m O .  71. The potential core solutions (1.8)
for  v a~Id w are modified by the factor p /~ but the projected streamline
pa t te rn  is unchanged.  In the sur face  bound~ry layers the secondary motion Is
acce ntua ted  or reduced as depicted in Fig. B . It I. evident f rom the fi gure
that the secondary flow patterns are significantl y altered with even moderate
mass transfer.
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Part II. - Numer ica l  Solution For A Square Chrmnne l

S.C. Rubin and P.K.  Khosla

II. 1 Flow Analysis - Full y Viscous Region

The boundary- layer /po ten t ia l  flow expansion procedure applicable in the
e n t r y  region Fig. 1 and described in Part I fails in the downstream flow where
x> > 1 or = 0(1) . From the results  of Part I we expect that the entry anal-
ysis (both series and asymptotic solutions) will apply many di ameters  down-
s t ream , e. g. , for all ~ <0. 20 ; but , (or la rger ~ values , t he err ors i n the
asym ptotic boundary- layer /potent ia l  core expansion procedure increase  as
the boundary layers grow and begin to fill the channel.

From the resul ts  of Part I , it is seen that a f ully viscous model is required.
The equations are appropriately wri t ten in terms of the coordinates_~~ , y ,  z).
The normalized velocities are u=~~IU 11 

, v=~ R $  2 v / U
11 w=~ R e 6 wf t J _

and the normalized pressure is — 2p=p /0U11. vimere

-l - Zp = p + R  Pl + R e Pa
See Pa rt I, equations 1.8 for the asymptotic form. required here. R~~aining
onl y the lowest orde r t e rms  In ~ R in each of the gove r ning equations (see
Part  1, equations 1.1). we obtain: e

Continuity: u + v + O w  = 0 (11.1)y z

~ Moment um : ~ B
2 V~ u =u u ,  + vu + OWU + p~~ (1 1 . 2)

y Momentu m: p0~ o , p1,,, = 0 (II. 3)

z Momentum: p0~ 
= 0 

~lz = o , (11. 4)

Streamwise Vorticity: (2 = o v ~ - w y

~~~~ V
2

C2 .- uc., + ~~~~ - aw~ - (ufi  + ~v - ~w)

+ v (2 + owfl +1) (v + ow ) • (11. 6)
y a y a

where ~~= cu ,~~= u  V 2 U (  ) +~~~~~~ )
a y yy zz

and c = a / b  = 1 for the square channel considered here. Equations
(11. 1, 6) are reformulated In terms of a potential function ~ and a stream
function * for the croseflow (v,w). We define

v A T  + C $  andy z

w = 0 ~
;
~ 

- ‘y • (11.7)

Therefore . (I I. 1, 5) becom e, respectively,

o -u~ , (11. 8)

and

V 2 $ ( I  . (11.9)
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Equations (II. 2 , 6 , 8 .9)  describe the unkn own. u ,~~ cp, I . v and w are re-
covered from (II. 7) . The st reamwise  pressure  gradient  p, depends only on

as seen from (II . 3 , 4) an d is specified bI , the mass cons~~r vat ion  in te g ra l

u (~,y, a) dydz =1 . (U. 10)

A
A denotes the rectangular cross-sectional area.

The appropriate boundary condit ions are shown on Fig. 9. It is easil y

p $“O. U ’O

r;: ~~~~~~, 
I £l.o — — I. 5 1  —

~4çT j~~ ’ I — — 

~~~~~~ 
I

u~ .0

P5111*50 ~~~~ OffiLCT~~~

Fig. 9 F in i te -d i f fe rence  grid and boundary  condition,

proven that these co nditio ns u n iquel y define p and $ - The zero normal mass
flux condition on v and w is satisfied exact l y. The no-sl i p condit ions a re
satisfied indirectl y th rough the surface vorticit y relation.

For two-dimensional channel, , solution, were also obtained with an al-
ter nate formulat ion in terms of the st ream function and vort ic i ty .  The surface
shea r was determined with the mass conservat ion condition (II. 10) . The
pre ssur e g radient  p~~was then obtained by application of the mom entu m
equation (11.2) at the surface, where the no-sli p conditio ns are app lied. It is
significant that fully converged solutions obtained at each streamwise location
by the two procedures were  identical .  The accuracy  of the fi nal solution is
the re fo re  limited solel y by the mesh size. A similar vorticity fo rm ulation is
possible for three-dimensional flows , althoug h it has not been used here .

Another impo rt an t feature of t he pr ese n t fo rm ulatio n is the co n servation
Implicit in the system (II .  8 , 9). With the Neumann boundary conditions on p
it is necessary that

A 

p dydz o (II. 11)

With the mass  conservation condition (II. 10) we automatical l y sati sfy

u~ dyda = o , (11. 12)

and therefore the Integral condit ion (II. 11) I s aiway. satisfied. In an earlier
study of this problem BrIley [a) applied a similar procedure with a sing le po-
tential function , but It was necessary to apply an Iterat ive correction factor in
order that (11. 11) be satisfied.

More Important , howeve r, the additional str eam function provides a simple
mechanism for exactly satisfying the vorticity ((I ) and secondary flow (v , w)
equations to any desired degree of accuracy. In this way we are able to

Ths zero subscri pt on p ha. been dropped.
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rigorously examine the mutual interaction between the streamwt se and
seco ndary motion, and thereby accura te l y evaluate  the effec t of one on the
other.  Finall y , the a symmet ry  of I) leads to the addi t ional  condit ion

A
This is insured by the boundary  conditions relat ing $ and C)

The governing system for the downs t ream flow , ~ = 0(1), and u l t imate ly
the f ully developed region , ~ >> 1, has now been desc ribed. It is sig n i f i c a n t
that the R eynolds nu mber R does not appear d i rec t ly, e i ther  in the equati ons
o r in the boundary conditions. The Reynolds number  dependence exists  onl y
in the t ra n sfo rm at ion relating ~ to the physical dis tance x. Therefore , wi th
the pr esent anal y sis , t he R eyn olds numbe r does not en te r , in an y way,  Into
the numerical calculations. A sing le solution valid for all Reynolds n u m b e r s
is obtained . If , for example , we consider a channel  defined by 0 <~~ < 1 , t h e n
the R eynolds nu mbe r defines th e ph ysical len gth of the duct. As tncreases
the d uct length increases and v ice-versa .

Finally, an overlap region where both the ent ry solution of Pa r t I a nd the
n umerical down etrea m results a re applica ble shoul d exis t .  We recall f rom
Par t I that , for a squa re chan nel , the asymptotic  behavior found in the po-
te ntial core of the entry  reg ion is of the fo r m

U — l  + 2~ , v _  -y,  w — -z , (11.13)

while the bo undary la yer variation , away  f r o m  the c o r n e r  reg iona , is as fol low s:

u ~~~ ( T I )  + 2~ f~ (TI) . (11.14)

w ... -zh ’ ( TI )

These solutions approximate the viscous channel eq uations (II. 1, 2 , 6 ) for
small values of ~ . Therefore, the numerical solutions for the downstream
viscous channel  flow , which are valid onl y for x > > l , should become meanin g-
ful for mode rate values of ~ , where  (II. 13, 14) are indica tive of the flow be-
havior. The complete cha nn el flow , away f rom the small leadin g edge Navier-
Stokes region , is then described by the composite entry plus downstream
solution.

11. 2 Nu merical Methods

The governing equations (11. 2, 6, 8, 9, 10) are solved numerically by a
marching procedure starting at the leading ed ge ~ = o . The initial condi t ions
a re assumed to be f l = v  =w = o. The axial velocity u is uni form and satisfies
the mass conservation condition (11. 10). At the wal ls  the no-s l i p and zero
mas s t ransfe r  conditions are enforced .  Since only the quar ter  channel  is con-
side r ed , symmet ry  conditions are prescr ibed along the center  l ines.  The
complete set of boundary conditions is shown on Fig. 9. These ini t ia l  values
are somewhat artificial and therefore  the numer ica l  solutions become mean-
ing f ul only afte r the Influe nce of the initial values  become negli g ible . i. e .,  in
the as ymptotic ent ry  flow described in Part I . In view of the parabolic
character of the vi scous channe l  equat ions , the only remain ing  infl uence of
the initial values will be reflected in the mass Conservation integral ~(10). This
behavior has previously been verified for two-dimensional channels L4-6 )
wh ere the asymptotic entry  behavior is closely approximated by the numer ica l
boundary layer solutions [7-9] . As will be shown in the p resen t  anal ysis , a
similar overlap Is found for a three-dimensional geometry.

Finite difference dlscret izat ion is used for all der ivat ive, .  These are
centered at the half point ~~ ~ In march ing  from ~ . to 

~l+l i . e . ,  a Crank-
Nlcol.on procedure . Ther~~8re,

(~~) ~~~~ j, k 
= 

~1~ 1 ~~~~~~~ 
u1 j , k 

, (II. l5a)
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= 
~I, j+ l, k ~I j — l ,  k + Uj .$4 j +1, k U1~ 1 j— 1 ,  k (II l5b )Uy I+~ .j , k 4h

(u ) = 
~1 j +l. k

_ ZU I, j . k+U l, j — l, k+to i+ l, j+ l, k
_ ZU I+1, j, k~ ’~i+l, J-i ,  k

yy i+~ , j , k 2h 2
(1115c)

All other variables are disc retized In a similar fashion; z derivatives are
obtained from (11.15) with j -.k , k~. j  and then transposing the subscripts.
Non-linear terms such as uu~ In (11.2) are treated with quasi-linearization,
so that 

* 2 *22u . to . -u . - u .
(u ) = 

i+1, j , k i+l , j , k i , j , k &+1 , j , k
~~ i+~ , j , k Z A ~

where ~ denote. the step size and the asterisk superscript denotes the value ,
at the new location 

~~+l obtained from the previous Iteration. The function
u(~ ,y  , Z

k
) is denoteà by U k where ~~. = (l. 1)A~, yj  (j-1)h and z

h i~s the uniform grid spa~’I~’g in the (y, at plane so thit h= 1/N. N i~~the
number of grid intervals in the quarter channel, see Fig. 9.

For each equation (Ii. 2, 6,8, 9) we obtain a system of the form

A
i Ui+l j+1, k+Bi Ui+l j-l , k +C~ U1.f1 j, k + D1 u~.,.1 j , k+1 (II. l~ )

+ E . u . . o F .
1 i+l ,;, k— l  ~

Ai .... F1 depe nd only on the values at ~~. or of the previous Iteration
(asterisks ). The full equations are ea.il~r derived. Equation (11.16) is solved
with an ADI predictor-corrector method for u , fl and point SOR for cp, $ .  For
the former the tridiagonal matrices are Inverted with the now standard two
pass algorithm. In the ADI iterative procedure the u4+1 ~+l k’ ~~~ k and

k terms are treated Implicitl y in the predict°or ’ ‘ ~~~‘ stage
and the terms u. . , to . . and u. . are implicit in

the Corrector stage. This ~~~ ~‘ 
k+l s+l , ;. k i+ l , j . k-l procedure was

found preferable to the line predictor-corrector method [16) as the symmetry
properties of the flow variab1es~~~e maintained to a high degree of accuracy.
For the SOB calculations an optimum over- relaxation parameter a [17] for a
square uniform grid with Dirichlet boundary conditions is specIfied;
a ~~2 (l-rt/(N+l). This parameter also works quite well on the Neumann pro-
blem (11.8) for p .  For N A lO a~~ 1.4 3. For N 2 O  a~~l. 72. For all equations .
the, .ystem (11. 16) is diagonally dominant and appears to be stable even for
relatively large values of A~

Finally, the pressure gradient in (11. 2) 18 updated by Newton extrapolation
such that the mass flu x condi t ion Is satisfied. The mass flux Integral is
approximated with the trapezoidal rule. The secondary vejocities v and w
are recovered from (II. 7).

The iterative procedure can be summarized as follows:
(1) At station ~~~~~~~ let p~ p, $,fl assume their ~~

. values.
(2) Calculate to

141 
f rom (II . 2) using Iterative AIM .

(3) Calculate R÷l from (11.6) using interative ADI.

(4) p1~1 and are found from (11.8,9) using SOR.

(5) Update v141 and w1~ 1 from (II. 7)
(6) Update ~~~~~ from (II. 10) and re turn  to step (1).

At each ~ locat ion this proced ur e continues un til all valu es have con verg ed
to the specified tolerance , e.g. six decimal place accuracy.

In the vorticity it reamfunction method discussed earlier,  the evaluation
of p~ In step (6) 1, rep laced with the direct evaluation of the wall shear, e. g.
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on y=-l , such that the mass flux condition (II . 10) is satisfied. The
; lsur e I. then obtained by application of (U. 2) at y = - l .  The two procedures

Fead to Identical result s In two dimensional channels. This latter approach
would be preferred for problems In turbomachinery where local separation
bubbles can be evaluated. This approach has previousl y been considered onl y
for ext.rnal flows [.18) .

11. 3 Results
The numerical solutions were obtained by considering the quarter channel

with mesh widths h = 0. 05 (21 points) and h = 0.1 (ll point.), respectively.
Therefore , in the entry flow where the boundary layers are very thin, the
accuracy of the results near the channel walls Is marg inal . Fur ther  down-
stream , as the boundary layers thicken , the resolution In creases markedl y.
All of the results are ven a.S functions of the normalized axial length ~
where we recall that ~ = 2x~~ lB . The solutions are Inde pendent of the
Reynolds number, except for theenormalizat ion inherent In ,~~ v, w. Note that
for large R even relatively small values of ~ can correspond to axial dis-
tanc e of mal~y channel widths.

The centerline velocity Is depicted on Fig. l0a for the entry flow , and
Fig. lOb shows the entire channel flow to fully developed conditions. Solutions

with the coarse and fine
gr ids are presented , as
are solutions with zeroIsSr — ‘ ~ — --‘ - - ~~~1

I ~~~~~~~~~ cr o.sfiow (secondary
I ——~.o03 H flow). The different

.~~~~50 C11SIPLOS $CLU1~~N Initial conditions with

~~~~~~~~~~ 

. differing meshes result1110.031

the mass flux conditions
,.~4 .~~ ..5 45l~~~.VTl05 from the requirement that

(II. 10) be satisfied. Also
shown are the entry so-
lutions obtained in Part I.
For a Reyhold. number
B = 75 the series so-
lullons are given; the R
Independent t ransform e
result (u_1+2~) describesthe behavior of to in the
asymptotic entry reg ion.
Finally, on Fig. lOb the

I ~~~~~~~ J experimental data of
reference [19) are also

- 
included. For 0. 2>~~>0. 08

0 001 0.04 0.05 Os, O,V 0 014 the entry and num~~i~al
solutions with crossflow

Fig. l0a Centerline velocity near inlet

are In good agreement with each other. Th. flow dependence on ~ and therefore
independence of B is evident. The solutions with zero crossflow are some-
what lower than th% ether solut Ions, but are not significantly different . In
fict, it can be concluded that the secondary motion has only a minor effect on
the axial behavior. As seen on Fig . 1%, agreement with the data is good.
Fully devele~ ed con&tl nus are achieved for ~ ~5~~ es0. 9-1. 0. Zn previous
studies, [1-6J the entrance length has been estimated to be in the range

= 0. 89-1. 0. From Fig. lOb , I t can be Inferred that the entry region an-
alysi. i~ valid tip to ~ 0, 2.

On FIg. 11 ~he axial velocity I. compar ed with experimental data. Many
additional comparisons were made, but since the agreement Is “Imila r to that
of FIg. 11, and since the axial behavior has been described quit e well In other
Investi gati ons , these results are not ln,.!uded here. The axial velocity profiles
along the centerline (zo O) are show n on Fig . 12.
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Profiles for the secondary
velocity near the corner

5.005 

(

511.05CM region are given on FIg. 13.
- cs0w~05 s0w~~~

~“ 15.0.03) Reverse flow profiles have
o cur~~~es~ Wa been calculated in the

I W.osi~~s~~ceI asymptotic entry reg ion.
— 

Similar behavior was pre-
dict*d by the entry analysis
of Part I, section I. 3.
The decay of the secondary
motion as fully developed

~~~
flow conditions are attainedU

’
is apparent. The resolu-

/
/ make quantitative corn-

tlon in the boundary layer
region Is Insufficient to

parisons of the numerical
and entry analysis for the
secondary motion. The
flow reversal occurs over
one-tenth of the channel
cross- section or one-fif th
of the total boundary layer
thickness for ~ 0.2. For

Let I the present calculationsi
0 05 0.4 OS 0.5 1.0 ,o this is at most two grid£ points. Even with the
F~ .mb CO4T~~ML V(LOc,Tv ~~ ATION coarse mesh, the axial

profiles (Fig. 14) agree
Fig. lOb Centerline velocity variation quite well with the second-

order boundary layer re-
sults present in Part I.
Near the end of the
asymptotic entry flow

.—IS~~~~ CM 
~~~~~~~~~ near the boundary layer

- - ~~~~, (Fig. l4b ) larg e differences

f.o.sss. 0.0.0 edge are apparent. Near
0 ~~PI~~W(W. W~ the surface the agreement~) 

is still qui te good . In
OS ~~~

Part I the extent of validity
of the second-order
boundary layer theory is
discussed in greater de-
tail.

l -,  

parameter u is presented
Finally, the shea r

on FIg. 15 at1’various lo-
cations on the surface .

0: 

values of ~~ , the numerIcal
y -l. For very small

O ~ 4 05 .5 5 1.0 solutions, the undisturbed
U

Fig. U Streamwtse velocity profile

aa.iu. result. and the second-order boundary laye r iolution. are in close
~~reement. As ~ Increases the wall value. (zoO. 95 or ~ = 0.90) decrease
due to corner layer Interference. As the boundary layers grow fur ther ,  the
mid-point values (a = 0. 5) also tall below the centerline (a = 0) solutions.
Second-order boundary layer theory is a significant Improvement ove r the
Blaslus value s In the entry flow (

~ 
< 0. 2); even for larger ~ value. , where

the theory I. questionable , the results are wIthin 20% of the numerica l so-
lut lons. Once aga in , the solutions obtained by neglecting the secondary
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Fig. 14a Streamwlse velocity profiles: ~ 0. 105 , zoO. 0
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motion are quite good. This
rei nforces our ear l ier  con-
clusions that the axial flo~ is_______________ - virt ually i n se n sit ive to the0 11.51155 secondary motion. On the other

— 2.4 050(5
50500Sv 1.5115 hand , the reverse is not tr ue as

• ( . ,.oo the secondary motion near the
• I’050 walls c h a n ges sig n i f ican t ly with

mesh ref inement , which has ais •~ ~~~~~~~~ 2 .030 .  5.0 . 10 much smaller  effect  on the axial
2150 CSOSSOLOS flow behavior .  Accura te sec-

ondary flow solutions near the
2 7 wal l, would require much f iner

~~~~~~~~~~~~~~~~
Jo03.

o O

meshes. Since there is no
available data for the secondary

I motion , fine r mesh calculat ions
were  not considered. The so-

O 
• ~

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ lutlo ns in the potential core ,
however , a r e  r easo nably

04 05 accurate. Isovels and Isovors
are given on Fig. 16. The pre-
dic ted core v elocity behavior
u — l+2~ and v -y  is closely
approximated.  The constant
vorticity lines clearly show the
ex te nt of the bo un da r y l aye r

________________ _________ 
growth .

• • __________

O oil 0.5 01 os ~.o5.003.. —5.0. 1
C

Fig. l~ Shear stress parameter: y~ -1. 0

II. 4 Summary

N umer ica l  solut ions  for  the flow in a square channel  have been obtaIned
and agree reasonably wel l  wi th  the  results  of the en t ry  reg ion a n a l ysi .  of
Part I. The numer ica l  p rocedure is also applicable for r e c t a n g u l a r  duct s ,
and provides solutIons for the axia l  and secondary  motion tha t  a re  fu l ly  con-
ver ged at each axial  locat ion.  The calcu la t ion s  are  Reynolds number  in-
dependent , so tha t  fo r a g iven geometry  only one set of results is required
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for all Reynolds numbers .
V U

_____ _________ The secondary motion shows
evidence of velocity revsrsal
similar to that predicted by
the entry analysis. Although
t he coarse mesh considere d

_____ here appears to be adequatebr
the axial flow and the second-
ary motio n in the potential
core , a f iner mesh is re-
quired to resolve the second-
a ry boundary layer behavior
near the walls, It is shown
that the cro ,sflows have
lit tle effect on the axial flow
a nd tha t in the ent ry  reg ion ,
the latter is described
reasonably well with second-
order boundary layer theory.

£1

Fi g. 16 Isovels and Isovo r e : ~ 0. 225
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